

Bases et applications de l'imagerie interférométrique

> Julien Girard julien.girard@cea.fr

Université de Paris

Julien Girard

Atelier radioastronomie France-Tunisie - 8-9/02/2021

Julien Girard julien.girard@cea.fr

Université de Paris

Julien Girard

- Pourquoi construire des réseaux d'antennes ?
- Principe de la mesure par interféromètrie
- Imagerie
- Déconvolution
- **Tour d'horizon de l'imagerie radio**

(Annexe: Étalonnage)

Limites d'une antenne unique Green Bank Transit Telescope (100 m)

Limites d'une antenne unique Green Bank Transit Telescope (100 m)

November 15th, 1988

Limites d'une antenne unique

Arecibo (300 m)

01/12/2020

https://www.youtube.com/watch?v=b3AASKr_iHc

https://www.youtube.com/watch?v=ydjV-ZXcAOA

 \bullet Sensibilité dépend de la surface collectrice $\propto D^2$

 $\propto 1/D$

• La résolution angulaire dépend de l'envergure maximale

• Sensibilité dépend de la surface collectrice

• La résolution angulaire dépend de l'envergure maximale

 $\propto 1/D$ $\propto 1/B$ Copyright © Addison Wesley

Ĺ

• Sensibilité dépend de la surface collectrice

 $\propto 1/D$ $\propto 1/B$

• La résolution angulaire dépend de l'envergure maximale

→ Réseaux d'antennes

Copyright @ Addison Wesley

Pourquoi construire des réseaux d'antennes ? Résolution angulaire KAT-7

Prototype MeerKAT

MeerKAT avec 16 antennes

61 SKAO eNewsletter August 2017 www.skatelescope.org

Julien Girard

Résolution angulaire

16 ant 1.3°x1.3° 1.4 GHz r.m.s. ~6.5 μJy

With 64 ant r.m.s. ~1µJy

Priv. Com. Rob Fender

Julien Girard

- **Organization:** Pourquoi construire des réseaux d'antennes ?
- Principe de la mesure par interféromètrie
- Imagerie
- Déconvolution
- **Tour d'horizon de l'imagerie radio**

Fabrication d'un réseau d'antennes

Telescope visible

1) Commencer avec un télescope "normal"

Fabrication d'un réseau d'antennes

Telescope visible

2) Découper le réflecteur en différent morceaux

Fabrication d'un réseau d'antennes

Telescope radio

3) Remplacer les miroirs et le capteur et tout relier par des fils

Fabrication d'un réseau d'antennes

Julien Girard

Fabrication d'un réseau d'antennes

Fabrication d'un réseau d'antennes

Fabrication d'un réseau d'antennes

7) Chaque morceaux est une antenne radio "facile" à gérer

Fabrication d'un réseau d'antennes

7) Chaque morceaux est une antenne radio "facile" à gérer

Que faire du signal phasé ?

Fabrication d'un réseau d'antennes

Somme	Produit	•

Que faire du signal phasé ?

Fabrication d'un réseau d'antennes

Fabrication d'un réseau d'antennes

Que faire du signal phasé ?

Transformée de Fourier à 2D

Transformée de Fourier à 2D

TF 1D
$$\hat{S}(\nu) = \int s(t)e^{-2i\pi\nu t}dt$$

Transformée de Fourier à 2D

A Duck **y**₀ -100 200 300 400 500 X 500 200 100 300 400 n

TF 1D
$$\hat{S}(\nu) = \int s(t)e^{-2i\pi\nu t}dt$$

Transformée de Fourier à 2D

FF 1D
$$\hat{S}(\nu) = \int s(t)e^{-2i\pi\nu t}dt$$

U

Transformée de Fourier à 2D

300

400

500

200

100

U

Atelier radioastronomie France-Tunisie - 8-9/02/2021

Atelier radioastronomie France-Tunisie - 8-9/02/2021

(I,m) Direction dans le ciel

(I,m) Direction dans le ciel

- (I,m) Direction dans le ciel
- (u,v) Fréquences spatiales
- 1 ligne de base projetée
 - = 1 échantillon du plan de Fourier (plan « u,v »)
 - = 1 visibilité

- (I,m) Direction dans le ciel
- (u,v) Fréquences spatiales
- 1 ligne de base projetée
 - = 1 échantillon du plan de Fourier (plan « u,v »)
 - = 1 visibilité

- (I,m) Direction dans le ciel
- (u,v) Fréquences spatiales
- 1 ligne de base projetée
 - = 1 échantillon du plan de Fourier (plan « u,v »)
 - = 1 visibilité

Mesure par interférométrie: plan (u,v)

- (I,m) Direction dans le ciel
- (u,v) Fréquences spatiales
- 1 ligne de base projetée
 - = 1 échantillon du plan de Fourier (plan « u,v »)
 - = 1 visibilité

Mesure par interférométrie: plan (u,v)

- 1 ligne de base projetée = 1 échantillon du plan de Fourier (plan « u,v »)
 - = 1 visibilité

En 1ère approximation

Exemple Image visible

Exemple Image visible

Exemple Image visible

Exemple Image visible

Exemple Image visible

Exemple Image visible

Exemple Image visible

5

5

S

5

NASA/JPL-Caltech/SwRI/MSSS Processing: Kevin M. Gill

5

5

Plusieurs éléments à différentes échelles spatiales

sans autocorrelations

V

X

Interféromètre avec une bonne diversité de lignes de base

- Coeur dense
- Lignes de bases intermédiaires
- Longue lignes de bases

V

visibilities involving the red antenna.

 adapted grid to compute local density of a gaussian distribution.

Densité (u,v) cible : distribution gaussienne radiale

Densité (u,v) cible : distribution gaussienne radiale Antennes ~ Particules d'un gaz subissant la résultante de forces de pression

Optimisation de la couverture ?

Optimisation de la couverture ?

Exemple avec contraintes de positionnement (bâtiments)

Solution NenuFAR

Julien Girard

Atelier radioastronomie France-Tunisie - 8-9/02/2021

En 1ère approximation, un interféromètre échantillonne la TF du ciel

Brillance

En 1ère approximation, un interféromètre échantillonne la TF du ciel

FT

FT(Brillance)

Fonction de "visibilité" continue

En 1ère approximation, un interféromètre échantillonne la TF du ciel

FT

FT(Brillance)

Fonction de "visibilité" continue

Échantillonnage discret par l'interféromètre

FT⁻¹(couverture uv) = PSF de l'interféromètre

En 1ère approximation, un interféromètre échantillonne la TF du ciel

Radio interferomètre électronique - LOFAR F=30-80 & 110-250 MHz

Radio interferomètre électronique - LOFAR

F=30-80 & 110-250 MHz

Radio interferomètre électronique - LOFAR

F=30-80 & 110-250 MHz

Radio interferomètre électronique - LOFAR

F=30-80 & 110-250 MHz

- Standalone Beamformer
- Standalone Transient Buffer
- Standalone Imager
- LOFAR "Super Station" mode

Sensitivity 2-8 x LOFAR

⇒ The world's most sensitive radiotelescope in the range 10-85 MHz
Mesure par interférométrie: quelques instances "Pathfinder" de SKA-LOW: NenuFAR

F = 20-88 MHz

56 + 1 remote Mini-arrays

Introducing "longer" baselines

Dedicated correlator

Mesure par interférométrie: quelques instances "Pathfinder" de SKA-LOW: NenuFAR

F = 20-88 MHz

56 + 1 remote Mini-arrays

Introducing "longer" baselines

Dedicated correlator

Early Science phase (-> 2021) Cosmic Dawn Exoplanets & Stars Pulsars Transients FRB Solar system

Clusters & AGNs & Filaments

RRL, ...

"Pathfinder" de SKA-LOW: NenuFAR

Mesure par interférométrie: quelqu "Pathfinder" de SKA-LOW: NenuFAR

Cœur seul

100

Angular distance [arcmin] Dirty image [Uniform - Core-only NenuFAR]

–5 0 5 Angular distance [deg] Deconvolved image [Uniform - Core-only NenuFAR]

-5 0 5 Angular distance [deg]

MR étendus

-> U Angular distance [deg]

Le radiohéliographe

Ext2

Le radiohéliographe

Ext2

Le radiohéliographe

Julien Girard

Atelier radioastronomie France-Tunisie - 8-9/02/2021

Radio interferomètres reconfigurables - le Jansky VLA - Nouveau Mexique

ALMA - (Chili
----------	-------

Array Specifications	Α	В	С	D
Number of Elements	27	27	27	27
Min Baseline	680 m	210 m	35 m	35 m
Min $\Delta heta_{1.4GHz}$	1.3'	4.2'	25.2'	25.2'
Max Baseline	36.4 km	11.1 km	3.4 km	1.03 km
Max $\Delta heta_{1.4GHz}$	1.5"	4.8"	15.5"	51.3"

- **Organization:** Pourquoi construire des réseaux d'antennes ?
- **Marine de la mesure par interféromètrie**
- **Imagerie**
- Déconvolution
- **Tour d'horizon de l'imagerie radio**

Mesures de visibilités complexe en fonction de

$$r_{uv} = \sqrt{u^2 + v^2}$$

Mesures de visibilités complexe en fonction de

$$r_{uv} = \sqrt{u^2 + v^2}$$

interprétation de la fonction de visibilité mesurée

Mesures de visibilités complexe en fonction de

$$r_{uv} = \sqrt{u^2 + v^2}$$

Imagerie + déconvolution

Début de

mesurée

Distribution de brillance

Snapshot

APSYNSIM

I. Marti-Vidal

Atelier radioastronomie France-Tunisie - 8-9/02/2021

Julien Girard

 $\underline{V}(u,v) \stackrel{\mathcal{F}^{-1}}{\to} T(l,m)$

Distribution en température de brillance du ciel (connaissance parfaite)

 $\underline{V(u,v)} \stackrel{\mathcal{F}^{-1}}{\to} T(l,m)$

Distribution en température de brillance du ciel (connaissance parfaite)

Fonction d'échantillonnage (couverture (u,v))

$$S(u, v) = \sum_{k=1}^{M} \delta\left(u - u_k, v - v_k\right)$$

 $\frac{V(u,v)}{V(l,w)} \stackrel{\mathcal{F}^{-1}}{\to} T(l,m)$

Distribution en température de brillance du ciel (connaissance parfaite)

Fonction d'échantillonnage (couverture (u,v))

$$S(u, v) = \sum_{k=1}^{M} \delta\left(u - u_k, v - v_k\right)$$

La PSF est liée à la fonction d'échantillonnage

$$psf(l,m) \xrightarrow{\mathcal{F}} S(u,v)$$

 $\underline{V(u,v)} \stackrel{\mathcal{F}^{-1}}{\to} T(l,m)$

Distribution en température de brillance du ciel (connaissance parfaite)

Fonction d'échantillonnage (couverture (u,v))

$$S(u, v) = \sum_{k=1}^{M} \delta\left(u - u_k, v - v_k\right)$$

La PSF est liée à la fonction d'échantillonnage

Visibilité complexe échantillonnée par S

$$psf(l,m) \xrightarrow{\mathcal{F}} S(u,v)$$

$$\underline{V(u,v)} \cdot \underline{S(u,v)} \stackrel{\mathscr{F}^{-1}}{\to} T^D(l,m)$$

Ciel "corrompu" Dirty

 $\underline{V}(u,v) \stackrel{\mathscr{F}^{-1}}{\to} T(l,m)$

Distribution en température de brillance du ciel (connaissance parfaite)

Fonction d'échantillonnage (couverture (u,v))

$$S(u, v) = \sum_{k=1}^{M} \delta\left(u - u_k, v - v_k\right)$$

La PSF est liée à la fonction d'échantillonnage

Visibilité complexe échantillonnée par S

$$psf(l,m) \xrightarrow{\mathcal{F}} S(u,v)$$

$$\underbrace{V(u,v) \cdot S(u,v)}_{\text{Théorème de}} \stackrel{\mathcal{F}^{-1}}{\longrightarrow} T^{D}(l,m) \xrightarrow{\text{Ciel}} \text{"corrompu"}$$

$$\underbrace{\mathcal{F}^{-1}}_{\text{Ia convolution}} \stackrel{\mathcal{F}^{-1}}{\longrightarrow} \mathcal{F}^{-1}$$

$$T(l,m) * psf(l,m) = T^D(l,m)$$

Julien Girard

rfaite) $\underbrace{V(u,v)}_{\mathscr{F}^{-1}} \xrightarrow{\mathscr{F}^{-1}} T(l,m)$

Théorème de

la convolution

7

Fonction d'échantillonnage (couverture (u,v))

$$S(u, v) = \sum_{k=1}^{M} \delta(u - u_k, v - v_k)$$
 (connaissance parfaite)

La PSF est liée à la fonction d'échantillonnage

Visibilité complexe échantillonnée par S

$$psf(l,m) \xrightarrow{\mathscr{F}} S(u,v)$$

 $\underbrace{V(u,v) \cdot S(u,v)}_{\mathcal{S}(u,v)} \stackrel{\mathcal{F}^{-1}}{\to} T^{D}(l,m) \xrightarrow{\text{Ciel}} \text{"corrompu"}$

Distribution en

température

de brillance du ciel

$$T(l,m) * psf(l,m) = T^D(l,m)$$

Échantillonner la fonction de visibilité dans l'espace de Fourier revient à convoluer le "vrai" ciel par la PSF

échantillonage discret du plan de Fourier (u,v) plane

Attention

- Faible échantillonnage dans Fourier
- Pas vraiment une TF
- les hypothèses simplificatrices ne tiennent plus

redondance, échantillons insuffisants interféromètre non-coplanaire approximation petit champ

+ tous les effets dépendants de la direction (DDE) (Beam, ionosphere...)

difficile

Organization: Pourquoi construire des réseaux d'antennes ?

Marine de la mesure par interféromètrie

Magerie

Déconvolution

Tour d'horizon de l'imagerie radio

Déconvolution == retirer l'effet de la PSF synthétique

== les conséquences de l'échantillonnage

Réalité "terrain"

- * Mesure continue
- * Résolution infinie

Inversion brutale des visibilités

* Mesure incomplète* Résolution finie

CLEAN (1974)

- Optimal pour les point sources
- Algorithme iteratif de soustraction graduelle de la PSF à l'image Dirty

CLEAN (1974)

- Optimal pour les point sources
- Algorithme iteratif de soustraction graduelle de la PSF à l'image Dirty

Algorithme "CLEAN" classique

Initialisation

Création d'une image **residuals** initialisée avec la **Dirty** Création d'une image **model** pour répertorier les détections gain = 0.9 & N_{max} & critère d'arrêt

Pour i < N_{max}:

- 1) Recherche du maximum dans **residuals** —> (i_{max}, j_{max})
- 2) Soustraction d'une fraction du max en utilisant la PSF centrée et mise à l'échelle du maximum $f = gain \times Residuals(i_{max}, j_{max})$
- 3) Ajout de f aux coordonnées (i_{max}, j_{max}) de l'image **model**
- 4) Retour à l'étape 1 de recherche du nouveau maximum

 $N_{iter} = 0$

 $N_{iter} = 30$

N_{iter} = **100**

N_{iter} = 300

Images from D. Wilner, NRAO

M2 AAIF - T01 - Instr. & Obs. radioastronomie

N_{iter} = 583

Images from D. Wilner, NRAO

M2 AAIF - T01 - Instr. & Obs. radioastronomie

À la fin, on convolue la carte des sources détectées avec une approximation lisse de la PSF

le "clean" beam

T^D(l,m)

restored image

Déconvolution - Algorithme au-délà de CLEAN

- ~40 ans de développement en déconvolution

Multifrequency, Multiscale CLEAN...

Tasse et al. 2012

Déconvolution - Algorithme au-délà de CLEAN

- ~40 ans de développement en déconvolution Multifrequency, Multiscale CLEAN...
- Aujourd'hui, prise en compte des effets dépendants de la direction Imagerie ~ Étalonnage

Tasse et al. 2012

Déconvolution - Algorithme au-délà de CLEAN

- ~40 ans de développement en déconvolution

Multifrequency, Multiscale CLEAN...

- Aujourd'hui, prise en compte des effets dépendants de la direction Imagerie ~ Étalonnage

Imagerie grand champ

Déconvolution - Algorithme au-délà de CLEAN

~40 ans de développement en déconvolution

Multifrequency, Multiscale CLEAN...

- Aujourd'hui, prise en compte des effets dépendants de la direction Imagerie ~ Étalonnage

Imagerie grand champ

Terme de réseau seul (PSF)

+

Correction de la non-coplanarité du réseau (Et/ou grand champ) ("W-term" ≠ 0)

Déconvolution - Algorithme au-délà de CLEAN

- ~40 ans de développement en déconvolution

Multifrequency, Multiscale CLEAN...

- Aujourd'hui, prise en compte des effets dépendants de la direction Imagerie ~ Étalonnage

Imagerie grand champ

Terme de réseau seul (PSF)

+

Correction de la non-coplanarité du réseau (Et/ou grand champ) ("W-term" ≠ 0)

+

Correction de la réponse de l'antenne élémentaire ("E-term")

Déconvolution - Algorithme au-délà de CLEAN

- ~40 ans de développement en déconvolution

Multifrequency, Multiscale CLEAN...

- Aujourd'hui, prise en compte des effets dépendants de la direction Imagerie ~ Étalonnage

Imagerie grand champ

Terme de réseau seul (PSF)

+

Correction de la non-coplanarité du réseau (Et/ou grand champ) ("W-term" ≠ 0)

+

Correction de la réponse de l'antenne élémentaire ("E-term")

Formalisme de Jones *Hamaker, Bregman, Sault, 1996,...*

Mourquoi construire des réseaux d'antennes ?

Marine de la mesure par interféromètrie

Magerie

Déconvolution

Tour d'horizon de l'imagerie radio

Cygnus A

Hercule A

Hercule A

Visible: Hubble

Hercules A (3C 348). Image credit: NASA, ESA, S. Baum and C. O'Dea (RIT), R. Perley and W. Cotton (NRAO/AUI/NSF), and the Hubble Heritage Team (STScI/AURA).

Julien Girard

Hercule A

Hercule A

Visible: Hubble

Hercules A (3C 348). Image credit: NASA, ESA, S. Baum and C. O'Dea (RIT), R. Perley and W. Cotton (NRAO/AUI/NSF), and the Hubble Heritage Team (STScI/AURA).

Julien Girard

Radio: VLA

Atelier radioastronomie France-Tunisie - 8-9/02/2021

Julien Girard

Atelier radioastronomie France-Tunisie - 8-9/02/2021

Ciel radio et diversité des rayonnements en radio

Combinaison des rayonnements

The radio and far-infrared spectrum of the nearby starburst galaxy M82. The contribution of free-free emission is indicated by the nearly horizontal dashed line. Synchrotron radiation (dot-dash line) and thermal dust emission (dots) dominate at low and high frequencies, respectively. Free-free absorption from Hii regions distributed throughout the galaxy absorbs some of the synchrotron radiation and flattens the overall spectrum at the lowest frequencies.

Julien Girard

La voie Lactée

La voie Lactée

SNR

Nuages Moléculaires

Filaments

Régions HII

Synchrotron diffus

Credit: NRAO/AUI and N.E. Kassim, Naval Research Laboratory

Atelier radioastronomie France-Tunisie - 8-9/02/2021

La voie Lactée

Credit: NRAO/AUI/NSF Yusef-Zadeh, et al.

MeerKAT

La voie Lactée

Credit: NRAO/AUI/NSF Yusef-Zadeh, et al.

MeerKAT

La voie Lactée

MeerKAT

Heywood et al., 2019

Julien Girard

étudiants de Master 2 AAIF 2019-2020

Champ de Virgo A

41°x41° 1 px = 5' Lune • **31 MHz** (Collaboration NenuFAR, 2020)

31 MHz (GSM adapté de Haslam, 1982)

Diversité des sources radio ASTRON Daily Image - 01/02/2021

Archive

JIVE homepage

Daily Image

Submit image

About

01-02-2021

ASTRON homepage

Today

https://www.astron.nl/dailyimage/main.php?date=20210201

Merci de votre attention !

Quelques ressources bibliographiques

En ligne

"Essential radio astronomy"

https://science.nrao.edu/opportunities/courses/era

Fundamentals of interferometry

https://github.com/ratt-ru/fundamentals_of_interferometry

quelques slides sur la calibration à lire chez vous...

Mesure par interférométrie

Tour d'horizon des grands observatoires actuels et futurs

r F F	20 20 20	201	2040	2022	2024	2040	2024	2022
← CTA Prototypes	\Rightarrow		Science V	erification =	⇒ User Oper	ation		
Low Frequency Radio								
LOFAR	<u>.</u>	•	•	•	•	•	•	
MWA	MWA (upgrade)							
(VLITE on JVLA	> (~2018? LO	BO)						
Mid-Hi Frequency Radio	(FAST	÷	÷	· ·	<u>.</u>	:	:)
JVLA, VLBA, eMerlin, ATCA, EV	VN, JVN, KVN, VERA, L	BA, GBT(m	any other sn	naller facilitie	es)			
ASKAP			$ \rightarrow $:				
Kat7> MeerKAT> SKA Phas								
(sub)Millimeter Badio			<u> </u>	1&2 (Lo/Mid)	•		
JCMT, LLAMA, LMT, IRAM, N	OEMA, SMA, SMT, SPT	Nanten2, Mo	pra, Nobeyar	na (many	other smaller	facilities)	•	
ALMA				· · ·				
EHT (protot	ype -> full ops)							
Optical Transient Factories/T	ransient Finders							
iPalomar Transient Factory	—> (~2017) Zwicky TF	-		T (buildup to	full survey n	; node)	:	;
PanSTARRS1 —> PanSTARRS2)
	ckGEM (Meerlicht single	dish prototype	e in 2016)					
Optical/IR Large Facilities								
VLT, Keck, GTC, Gemini, Magel	lan(many other smaller	facilities)						
HST	<u>.</u>	JWST			Y	-	_:\	GMT
		:	:		EI T (full one	: ration 2024)	& TMT (time	line less clear)?
K-ray	i		:		eni (iun ope	i attoir 2024)		inte tess cicar).
XMM & Chandra								
NuSTAR				(IXPE				
ASTROSAT								(ATHENA (20)
	LIVMT							
			-				\sim	
	NICER) SITA	:	(XAF	RM			
Samma-ray	NICER eRO) SITA			RM	$m_2 r_{2V} \perp on$	ical ground of	
Gamma-ray	NICER eRO) SITA	:	(XAF	RM incl. soft gam	ma-ray + opt	ical ground e	lements)
Gamma-ray INTEGRAL Fermi	eRO) SITA	:	(XAF	RM incl. soft gam	ma-ray + opt	ical ground el	lements)
Gamma-ray INTEGRAL Fermi HAWC	eRO) SITA		(XAF SVOM (i	RM incl. soft gam	ma-ray + opt	ical ground e	lements)
Gamma-ray INTEGRAL Fermi HAWC DAMPE	eRO) SITA		(XAF	RM incl. soft gam)	ma-ray + opt	ical ground el	lements)
Gamma-ray INTEGRAL Fermi HAWC DAMPF Grav. Waves	eRO			(XAF	RM incl. soft gam)	ma-ray + opt	ical ground e	lements)
Gamma-ray INTEGRAL Fermi HAWC DAMPE Grav. Waves Advanced LIGO + A	eRO eRO		Contraction of the second seco	(XAR (SVOM (i	RM incl. soft gam) GO India—)	ma-ray + opt	ical ground e	lements) Gamma400 (2025+) Einstein Tel.
Gamma-ray INTEGRAL Fermi HAWC DAMPE Grav. Waves Advanced LIGO + A	eRO eRO) SITA (LHAAS((KAGI	D (-upgrade t RA	(XAF (SVOM (i	RM incl. soft gam) GO India—)	ma-ray + opt	ical ground el	lements) Gamma400 (2025+) Einstein Tel.
Gamma-ray INTEGRAL Fermi HAWC DAMPF Grav. Waves Advanced LIGO + A Neutrinos	eRO eRO dvanced VIRGO (2017)) SITA (LHAAS(KAGI	C C C C C Upgrade t RA C C	(XAR SVOM (i	RM incl. soft gam) GO India—)	ma-ray + opt	ical ground e	lements) Gamma400 (2025+) Einstein Tel.
Gamma-ray INTEGRAL Fermi HAWC DAMPE Grav. Waves Advanced LIGO + A Neutrinos IceCul ANTARES	eRO eRO ceRO ceRO ceRO ceRO ceRO ceRO ce		C C C C C C C C C C C C C C C C C C C	(XAF SVOM (i o include LIC	RM incl. soft gam) GO India—)	ma-ray + opt	ical ground el	Gamma400 (2025+) Einstein Tel. IceCube-Gen2?
Gamma-ray INTEGRAL Fermi HAWC DAMPH Grav. Waves Advanced LIGO + A Neutrinos IceCul ANTARES	dvanced VIRGO (2017) be (SINCE 2011) (KM3NET-1	SITA (LHAAS((KAGI	Contractions of the second sec	(XAF SVOM (i o include LIC	RM incl. soft gam) GO India –)	ma-ray + opt	ical ground el	lements) Gamma400 (2025+) Einstein Tel. IceCube-Gen2? KM3NET-3
Gamma-ray INTEGRAL Fermi HAWC DAMPH Grav. Waves Advanced LIGO + A Neutrinos IceCul ANTARES JHE Cosmic Rays	E Advanced VIRGO (2017) be (SINCE 2011) (KM3NET-1		Contractions of the second sec	(XAF (SVOM (i so include LIC	RM incl. soft gam) GO India—)		ical ground el	lements) Gamma400 (2025+) Einstein Tel.

Julie.

APSYNSIM

Aperture Synthesis Simulator

https://github.com/onsala-space-observatory/APSYNSIM

https://arxiv.org/abs/1706.00936

Gridding + pondération

On a le choix de pouvoir pondérer les échantillons entre eux

Pondération "uniforme"

Chaque échantillon a le même poids → Meilleure résolution angulaire

Pondération "naturelle"

On favorise les échantillons les moins bruités → Meilleure sensibilité

Pondération intermédiaire ("Briggs")

R = **Robustness** = **[-2..0..2]**

"curseur" permettant un compromis entre uniforme et naturel

AGN (active galactic nucleus) - powered Radio Sources Radio Quasars FRII/FRI Radio Galaxies

Non-AGN powered radio sources Supernova Remnants Star-forming Galaxies HI gas (neutral hydrogen) Molecular Clouds HII regions Sun Planets and moons...

AGN (active galactic nucleus) - powered Radio Sources Radio Quasars FRII/FRI Radio Galaxies

Non-AGN powered radio sources Supernova Remnants Star-forming Galaxies HI gas (neutral hydrogen) Molecular Clouds HII regions Sun Planets and moons...

Julien Girard

AGN (active galactic nucleus) - powered Radio Sources Radio Quasars FRII/FRI Radio Galaxies

Non-AGN powered radio sources Supernova Remnants Star-forming Galaxies HI gas (neutral hydrogen) Molecular Clouds HII regions Sun Planets and moons...

Radio Galaxy 3C31 NGC 383 Copyright (c) NRAO/AUI 2000

Atelier radioastronomie France-Tunisie - 8-9/02/2021

Observation rapide et VLBI du microquasars V404 Cygni

Observation rapide et VLBI du microquasars V404 Cygni

Différentes générations de calibration Étalonnage moderne

équivalent optique

"1ère génération" (1GC) Étalonnage valable au centre du champ Utilisation de sources étalon aux propriétés connues

$$\widetilde{V}_{pq}(t,\nu) = g_p(t,\nu)g_q^*(t,\nu)V_{pq}(t,\nu) + \epsilon_{pq}(t)$$

"1ère génération" (1GC) Étalonnage valable au centre du champ Utilisation de sources étalon aux propriétés connues

$$\widetilde{V}_{pq}(t,\nu) = g_p(t,\nu)g_q^*(t,\nu)V_{pq}(t,\nu) + \epsilon_{pq}(t)$$

Visibilités corrompues Gain Gain antenne pantenne

Gain Visibilités antenne q vraies

bruit sur la ligne de base (p,q)

corrompues

"1ère génération" (1GC) Étalonnage valable au centre du champ Utilisation de sources étalon aux propriétés connues

antenne p

$$\widetilde{V}_{pq}(t,\nu) = g_p(t,\nu)g_q^*(t,\nu)V_{pq}(t,\nu) + \epsilon_{pq}(t)$$

Visibilités Gain Gain Visibilités bruit sur la ligne

antenne q

vraies

de base (p,q)

corrompues

"1ère génération" (1GC) Étalonnage valable au centre du champ Utilisation de sources étalon aux propriétés connues

antenne p

$$\widetilde{V}_{pq}(t,\nu) = g_p(t,\nu)g_q^*(t,\nu)V_{pq}(t,\nu) + \epsilon_{pq}(t)$$

Visibilités Gain Gain Visibilités bruit sur la ligne

antenne q

vraies

Visibilité corrigées "2ème génération" (2GC) "Self-calibration" Visibilité Amélioration de l'étalonnage brutes données grâce au contenu du champ "3ème génération" (3GC) Images Equation de la mesure déconvoluées $J^{\mathbf{q}} = J_n J_{n-1} \cdots J_2 J_1$ Effets dépendants de la direction non uniformes dans le champ

de base (p,q)

Observation de sources étalons

(dont on connait, la forme, la densité de flux, le spectre)

1GC
Observation de sources étalons

(dont on connait, la forme, la densité de flux, le spectre)

• Stratégie d'observation: alternance entre source étalon et champ cible

1GC

Observation de sources étalons

(dont on connait, la forme, la densité de flux, le spectre)

• Stratégie d'observation: alternance entre source étalon et champ cible

 La source étalon permet de suivre les variations de la réponse de l'instrument (~étoile guide)

 \cdot On détermine les gains complexes des antennes \mathcal{g}_p qui seront utilisé pour corriger les visibilités du champ cible.

• On peut sélectionner, lisser, interpoler ces solutions suivant le degré de correction

1GC

- A) L'étalonnage en flux absolu (ou primaire) est faite pour déterminer l'échelle physique de densité de flux des sources dans le champ. ("Absolute Flux Calibration/calibrator")
- B) L'étalonnage en bande passante est utilisée pour corriger de la réponse instrumentale de long de l'axe de fréquence.
 ("Bandpass calibration/calibrator")
- C) La correction des délais utilisée pour enlever les délais résiduels superflus de phase entre les antennes. ("Delay calibration/correction")
- D) L'étalonnage en gain est utilisée pour déterminer les gains complexes (amplitude et phase) effectifs de chaque antenne pendant une observation ("Gain calibration / Phase calibrator")
- En pratique, A),B) et C) sont fait avec la même source de référence D) est effectué sur une source de référence proche ou dans le champ cible

1GC

Simulation d'une erreur périodique du gain de 20% (0.8-1.2) sur chaque antenne

Gain des 14 antennes du WSRT (Westerbork Synthesis Radio Telescope)

t

1GC

Simulation d'une erreur périodique du gain de 20% (0.8-1.2) sur chaque antenne

Gain des 14 antennes du WSRT (Westerbork Synthesis Radio Telescope)

t

→ Amplitude de la visibilité pour quelques lignes de bases
 (en fonction de t)

1GC

Simulation d'une erreur périodique du gain de 20% (0.8-1.2) sur chaque antenne

Gain des 14 antennes du WSRT (Westerbork Synthesis Radio Telescope)

→ Amplitude de la visibilité pour quelques lignes de bases
 (en fonction de t)

Soustraction de la source (à partir d'un modèle supposé de la source)

Avant étalonnage des Gains $\delta S(\theta, \phi)$

Min = -0.03 Jy

Max = 0.03 Jy

 ⇒ La source a bien été soustraite, mais il reste des résidus (variations d'intensité) élevés dus aux erreurs de gain
 <u>artificiellement introduites et non corrigées.</u>

Min = $-1.5 \ 10^{-9} \ Jy$ Max = $1.5 \ 10^{-9} \ Jy$

⇒ Les résidus ont une statistique gaussienne (erreur numérique dans ce cas)

Après l'étalonnage 1GC et application des solutions au champ cible, il est possible de faire une première image "décente"

Après l'étalonnage 1GC et application des solutions au champ cible, il est possible de faire une première image "décente"

On définit la plage dynamique de l'image (Dynamic Range) comme le rapport: max(I)

$$DR = \frac{\max(I)}{\sigma_I}$$
 ex: DR = 1:1000, 1:10⁶

Après l'étalonnage 1GC et application des solutions au champ cible, il est possible de faire une première image "décente"

On définit la plage dynamique de l'image (Dynamic Range) comme le rapport: max(I)

$$DR = \frac{\max(I)}{\sigma_I}$$
 ex: DR = 1:1000, 1:10⁶

Après l'étalonnage 1GC et application des solutions au champ cible, il est possible de faire une première image "décente"

On définit la plage dynamique de l'image (Dynamic Range) comme le rapport: max(I)

 $DR = \frac{\max(I)}{\sigma_I}$ ex: DR = 1:1000, 1:10⁶

Après l'étalonnage 1GC et application des solutions au champ cible, il est possible de faire une première image "décente"

On définit la plage dynamique de l'image (Dynamic Range) comme le rapport: max(I)

 $DR = \frac{\max(I)}{\sigma_I}$ ex: DR = 1:1000, 1:10⁶

Après l'étalonnage 1GC et application des solutions au champ cible, il est possible de faire une première image "décente"

On définit la plage dynamique de l'image (Dynamic Range) comme le rapport: max(I)

 $DR = \frac{\max(I)}{\sigma_I}$ ex: DR = 1:1000, 1:10⁶

Après l'étalonnage 1GC et application des solutions au champ cible, il est possible de faire une première image "décente"

On définit la plage dynamique de l'image (Dynamic Range) comme le rapport:

 $DR = \frac{\max(I)}{\sigma_r}$ ex: DR = 1:1000, 1:10⁶

On peut rafiner l'étalonnage avec l'algorithme de self-calibration

 σ_I

Après l'étalonnage 1GC et application des solutions au champ cible, il est possible de faire une première image "décente"

On définit la plage dynamique de l'image (Dynamic Range) comme le rapport:

 $DR = \frac{\max(I)}{\sigma_r}$ ex: DR = 1:1000, 1:10⁶

On peut rafiner l'étalonnage avec l'algorithme de self-calibration

 σ_I

Après l'étalonnage 1GC et application des solutions au champ cible, il est possible de faire une première image "décente"

On définit la plage dynamique de l'image (Dynamic Range) comme le rapport: max(I)

 $DR = \frac{\max(I)}{\sigma_I}$ ex: DR = 1:1000, 1:10⁶

Julien Girard

Étalonnage des interféromètres

Après l'étalonnage 1GC et application des solutions au champ cible, il est possible de faire une première image "décente"

On définit la plage dynamique de l'image (Dynamic Range) comme le rapport: $DR = \frac{\max(I)}{\sigma_I}$

ex: DR = 1:1000, 1:10⁶

On peut rafiner l'étalonnage avec l'algorithme de self-calibration

Visibilité

corrigées

3GC

Après plusieurs itérations de self-calibration, l'image ne s'améliore plus. Cependant il peut rester des artefacts non désirés et non capturés par l'étalonnage (surtout si on veut imager dans un grand champ)

> Région où l'étalonnage classique est valable

> > Credits image: O. Smirnov

Différentes générations de calibration Étalonnage moderne

Région où l'étalonnage classique est valable

Credits image: O. Smirnov

3GC

effet du beam

Credits image: O. Smirnov

JVLA (2014 image)

1.4 GHz

Étalonnage moderne

22.82 Jy peak 4.5 uJy noise 5 million DR confusion limited

JVLA (2014 image)

1.4 GHz

Étalonnage moderne

22.82 Jy peak 4.5 uJy noise 5 million DR confusion limited

JVLA (2014 image)

1.4 GHz

Étalonnage moderne 22.82 Jy peak 4.5 uJy noise 5 million DR confusion limited

JVLA (2014 image)

1.4 GHz

Étalonnage moderne

Antenna beam

22.82 Jy peak 4.5 uJy noise 5 million DR confusion limited

Rotation du lobe

Effets au-délà du lobe primaire

Changement d'échelle du lobe

Rotation du lobe

Effets au-délà du lobe primaire

Changement d'échelle du lobe

Rotation du lobe

Effets au-délà du lobe primaire

Changement d'échelle du lobe

Rotation du lobe

Effets au-délà du lobe primaire

Changement d'échelle du lobe

Quelle origine possible?

Rotation du lobe

Effets au-délà du lobe primaire

Changement d'échelle du lobe

Quelle origine possible?

Type de monture du télescope

Rotation du lobe

Effets au-délà du lobe primaire

Changement d'échelle du lobe

Quelle origine possible?

Type de monture du télescope

Changement de fréquence

 $\theta_{I^{re}} = \frac{\lambda}{D} \propto \nu^{-1}$

Effets dépendants de la direction

Diagramme d'antenne

la polarisation

Effets dépendants de la direction

Diagramme d'antenne

cte le gain la polarisation

Turbulence

Déformation, disparition de la source

Turbulence

Déformation, disparition de la source

L'équation de la mesure

3GC

 \mathcal{B}

L'équation de la mesure

Radio Interferometer Measurement Equation (RIME)

$$V_{pq} = J_p \mathcal{B} J_q^H$$

[Hamaker, Bregman, Sault, 96] [Smirnov, 11]

L'équation de la mesure

Représentation compact, linéaire et intuitive des effets de propagation

Indispensable pour les interféromètres radio modernes