

Radioastronomy in France (cm/dm)

Stéphane Corbel

Twitter: stephane_corbel

Station de Radioastronomie de Nançay

Outline

- * Radioastronomy in general
- * The Nançay Radio Observatory
- * The Nançay Radio Telescope (NRT)
- * Few research's topics around Paris' Observatory

Radioastronomy?

Atmosphere's transparency

Atmosphere's transparency

What are we talking about?

A precious indicator : signature of Hydrogen

Atome d'hydrogène

The Nobel Prize in Physics 1974

"for their pioneering research in radio astrophysics: Ryle for his observations and inventions, in particular of the aperture synthesis technique, and Hewish for his decisive role in the discovery of pulsars"

Sir Martin Ryle

Antony Hewish

The Nobel Prize in Physics 1974

"for their pioneering research in radio astrophysics: Ryle for his observations and inventions, in particular of the aperture synthesis technique, and Hewish for his decisive role in the discovery of pulsars"

Sir Martin Ryle Antony Hewish

The Nobel Prize in Physics 1974

"for their pioneering research in radio astrophysics: Ryle for his observations and inventions, in particular of the aperture synthesis technique, and Hewish for his decisive role in the discovery of pulsars"

Sir Martin Ryle Antony Hewish

The Nobel Prize in Physics 1978

"for their discovery of cosmic microwave background radiation"

Arno Allan Penzias

Robert Woodrow Wilson

The Nobel Prize in Physics 1974

"for their pioneering research in radio astrophysics: Ryle for his observations and inventions, in particular of the aperture synthesis technique, and Hewish for his decisive role in the discovery of pulsars"

Sir Martin Ryle Antony Hewish

Arno Allan Penzias

Robert Woodrow Wilson

The Nobel Prize in Physics 1974

"for their pioneering research in radio astrophysics: Ryle for his observations and inventions, in particular of the aperture synthesis technique, and Hewish for his decisive role in the discovery of pulsars"

Sir Martin Ryle Antony Hewish

The Nobel Prize in Physics 1993

"for the discovery of a new type of pulsar, a discovery that has opened up new possibilities for the study of gravitation"

Russell A. Hulse

Arno Allan Penzias

Joseph H. Taylor Jr.

Robert Woodrow Wilson

A radio observatory @Nançay

Une structure dépendant de l'Observatoire de Paris, du CNRS et de l'Université d'Orléans

« Nançay ... le lieu du monde que je préférais » Alain-Fournier (Famous french writter)

PARIS ÉMILE-PAUL FRÊRES, ÉDITEURS 100, RUE DU FAUDOURG-SAINT-HONORÉ, 100 PLACE BEAUVAU 1913

* During WWII, **Y. Rocard** heard about detection of radio emission from the Sun by British radars.

- * During WWII, **Y. Rocard** heard about detection of radio emission from the Sun by British radars.
- * Under the initiatives of **J. F. Denisse** and **J.-L. Steinberg**, radioastronomy started in France soon after.

- * During WWII, **Y. Rocard** heard about detection of radio emission from the Sun by British radars.
- * Under the initiatives of **J. F. Denisse** and **J.-L. Steinberg**, radioastronomy started in France soon after.
- They first used German Wurzburg 7.5m radars in Marcousis close to Paris; but too limited in size for additional extensions.

- * During WWII, **Y. Rocard** heard about detection of radio emission from the Sun by British radars.
- * Under the initiatives of **J. F. Denisse** and **J.-L. Steinberg**, radioastronomy started in France soon after.
- * They first used German **Wurzburg** 7.5m radars in **Marcousis** close to Paris; but too limited in size for additional extensions.
- * Search for a reasonable size and flat field (150 hectares) not too far from Paris (for easy communication) and far from industries (free from RFI).

- * During WWII, **Y. Rocard** heard about detection of radio emission from the Sun by British radars.
- * Under the initiatives of **J. F. Denisse** and **J.-L. Steinberg**, radioastronomy started in France soon after.
- * They first used German **Wurzburg** 7.5m radars in **Marcousis** close to Paris; but too limited in size for additional extensions.
- Search for a reasonable size and flat field (150 hectares) not too far from Paris (for easy communication) and far from industries (free from RFI).
- Creation of the observatory in 1953 with 3 historical instruments : NRH (1955) , NRT (1965, inaugurated by Général De Gaule) and NDA (1978). New instruments : LOFAR (2010) and NenuFAR (2019).

 Creation of the observatory in 1953 with 3 historical instruments : NRH (1955) , NRT (1965, inaugurated by Général De Gaule) and NDA (1978). New instruments : LOFAR (2010) and NenuFAR (2019).

- ~45 FTEs (~2/3 OP + 1/3 CNRS) + few temporaries grouped en 4 teams: electronic, computing, logistic, administration.
- * 1 scientific on site (head of the observatory). Stronger connection with Orléans, Paris and Nantes.

- ~45 FTEs (~2/3 OP + 1/3 CNRS) + few temporaries grouped en 4 teams: electronic, computing, logistic, administration.
- * 1 scientific on site (head of the observatory). Stronger connection with Orléans, Paris and Nantes.
- * A technical laboratory with R&D in numerical electronics, microelectronics, integrated receivers, backends...

- ~45 FTEs (~2/3 OP + 1/3 CNRS) + few temporaries grouped en 4 teams: electronic, computing, logistic, administration.
- * 1 scientific on site (head of the observatory). Stronger connection with Orléans, Paris and Nantes.
- * A technical laboratory with R&D in numerical electronics, microelectronics, integrated receivers, backends...
- Several international collaborations (ASTRON, Univ. Manchester, Berkeley, ...) et industries (ALSE, NXP, Eurocircuits, CMP, Intercept Tregor, ...).

Radio Environment Monitoring 100 MHz – 4 GHz

Wit:

150-450 MHz

NRT 1,0-3,5 GHz

NDA 10-80 MHz

ORFEES 0.1-1.0 GHz LOFAR 30-250 MHz

and now also NenuFAR (10-85 MHz)

LBA

HBA

EMBRACE 0,5-1,5 GHz CODALEMA 10-250 MHz

The Nançay decimetric radiotelescope (NRT)

See talk by I. Cognard

NRT = «big » radiotélescope

- * 4th antenna in size in the world (FAST and the big 3). 80 % of time on sky.
- * Main receivers: NUPPI (Pulsar dispersion in real time for 512 MHz bandwidth (8 GPUs), soon for 2 GHz); WIBAR (600 MHz, ~10⁶ channels) +auto-correlator to be upgraded soon.
- ✤ ~5 FTE / an.
- Program committee (2400 h/sem): dominated by observations of pulsars.

Pulsars

An intermediate mass black hole at the center of the globular cluster NGC6624?

- PSR B1820-30A is located in the globular cluster NGC 6624 and is the closest known pulsar to the centre of any globular cluster.
- * 25 years of high-precision timing observations of this millisecond pulsar (NRT, JBO, ...)
- * The high-eccentricity solution reveals that the pulsar is most likely orbiting around an **intermediate-mass black hole** (IMBH) of mass >7,500M☉ located at the cluster centre.

Systèmes de pulsars binaires relativistes

Contraintes sur l'espace α₀-β₀ des théories tenseur scalaire

rouge, bleu : contraintes SEP / pulsar système triple

gris : limites à 2 des expériences dans le Système Solaire

Cassini (pleine), Laser-Lune (tirets), MESSENGER (pointillé).

La gravité JFBD correspond à $\beta_0 = 0$ (fine ligne verticale).

Slide : Gilles Theureau

Analyse des observations du système triple PSR J0337+1715 (Voisin et al 2020)

Test du SEP \rightarrow G_{NS-WD} \neq (1 + Δ) G_{WD-WD}

|**Δ**| < 1.8 10⁻⁶ à 95%.

Pulsars multi- λ

Support NICER (X-ray) (Guillot et al 2019)

Détection de cinq pulsars millisecondes à partir des éphémérides radio

Émission thermique X de la calotte polaire

Futures contraintes sur la relation masse-rayon et sur l'équation d'état de la matière dense

PSR J0030+0451

12

R(km)

3.0

2.5

2.0

1.5

 1.0^{L}_{9}

10

11

 $M (M_{\odot})$

Pulsars as a tool for gravitational waves

EPTA: European consortium IPTA: International consortium

NRT, pulsars, GW, supermassive binary black holes

NRT 61% EFF 15% The NRT

provides 55% of

Lentati et al. 2015

Desvignes et al, MNRAS 458, 3341 (2016)

Analysis of the 6 best EPTA pulsars (Desvignes et al, 2016)

Dashed : no hypothesis on the nature of the population Black : Power-law with index 13/3 corresponding to stochastic background of binary supermassive black holes

NRT, pulsars, GW, supermassive binary black holes

Hobbs et al. 2017

NRT, pulsars, GW, supermassive binary black holes

A major update in 2021

Hobbs et al. 2017

Le FRB « repeater » FRB121102

Plus de 130 impulsions d'intensité très variable ont été recensés sur plus de 400 heures d'observation

Campagne coordonnée multi-télescope (Arecibo, Green Bank, Effelsberg, FAST, SRT, ALMA + INTEGRAL)

Quatre impulsions détectées simultanément entre MeerKAT et le NRT sont présentés dans Caleb et al (2020).

Une analyse détaillée de la séquence des impulsions détectées à Nançay est en cours (Cognard et al in prep) et semble confirmer l'existence d'une périodicité agrémentée de variations plus lentes de l'activité

(et chaque observation repérée par un point noir le long de l'axe des dates MJD),

la périodicité de ~150 jours et les fenêtres d'activité sont en hachuré.

Slide : Gilles Theureau

Régions de formation stellaire

Evolution of the OH Maser Emission in the Active Star-Forming Region IRAS 05358+3543 (S231)

Table 1. Parameters of the main features in the OH spectra in the source S231

Ashimbaeva, Colom et al 2020a (6 autres papiers « stellaires » depuis sept 2019)

<u>Ci-contre :</u>

Émission de OH à 18 cm dans les raies principales en polarisation circulaire droite (ligne épaisse) et en polarisation circulaire gauche (ligne f ne).

Epoch of	Line, MHz	V _{LSR} , km/s	Sto	kes parameters	Degree of	Position	
observations, day month year			Ι	Q	U	polarization, %	angle, deg
18.12.2008	1665	-10.82	4.06	0.74	-0.36	20	-26
	1665	-9.32	3.60	0.17	0	5	0
	1667	-10.40	1.84	0.10	-0.04	6	-22
11.10.2014	1665	-10.88	4.95	0.56	-0.29	13	-27
	1665	-9.27	4.0	-0.15	0	5	0
	1667	-10.35	3.35	0	-0.37	11	-45
15.02.2015	1665	-10.88	4.6	0.66	-0.35	16	-28
	1665	-9.29	3.8	0	0	0	
	1667	-10.45	2.80	0	-0.20	7	-45
8.04.2020	1665	-10.90	4.3	0.58	-0.18	14	-17
	1665	-9.31	3.5	0	0	0	
	1667	-10.40	2.40	0.10	-0.13	16	-38

Stokes I,	Q et U,	degrés	de po	larisation	linéaire
of DA nor		uno roio	o ot ó		

et PA pour quelques raies et epoques.

La variabilité est relativement faible pour la polar linéaire.

La polar circulaire pour une des raies à 1665 MHz montre un "Zeeman splitting" et a permis de mesurer le champ magnétique projeté sur la ligne de visée et son évolution entre 2008 et 2020

Radio astronomy across the Paris's Observatory

Few examples

- * NRT Science : pulsars under scrutiny (the pulsar itself, the environnement with precise measurements of its metrics , multi-wavelength emission, ...), HI in galaxies, comets, star forming regions, ...
- Radio observations of accreting objects : galactic black holes (Corbel), AGNs (Zech, Sol, ...) and synergies HE, gamma-ray burst (Vergani), ...
- **EHT** (team from LUTH/LESIA)
- * Evolution of **galaxies** and big structure (Combes, ...)
- * Interstellar medium (synergies with mm obs.)
- * And much more....

Merci beaucoup de votre attention

Twitter: stephane_corbel