
Taha BEN SALAH (NOCCS, ENISo, Sousse University)

Taoufik AGUILI (Sys’Com, ENIT, UTM University)

New Scientific Programming Language

Agenda
● Introduction

● Existing Scientific Programming Languages

● Presenting the new Scientific Programming Language

● Comparisons and results

● Conclusion

2

What is a scientific language

A scientific language is a programming language optimized for

the use of mathematical formulas and matrices.

3

Existing Scientific Languages:
 DSL : Domain Specific Languages
MATLAB, Maple, FORTRAN, ALGOL, APL,J, Julia, Wolfram Language/Mathematica,

and R.

Non Scientific Languages used by scientists
 GPL: General Purpose Languages
C/C++, Python, Scala, Java

4

Why a new Programming Language
● Limits of the existing Programming Languages

● Simpler syntax or More Powerful syntax

● Better portability

● Better integration

● Better performance

5

Python Java/Scala/Kotlin Julia Matlab R

Type GPL GPL DSL DSL DSL

Paradigm Prototyping,
Web, Data

Science

Server, Big Data,
Distributed
Systems

Computation Scientific
computation,
Matrices, ...

Statistics, Data
Science

Price Free & Open
Source

Free & Open
Source

Free & Open
Source

Commercial Free & Open
Source

Advantages Community,
Simplicity,
Libraries

Community, Tools,
Libraries

Simplicity,
Performance

Simplicity,
Toolboxes
(Simulink)

Toolboxes

Limitations Performance,
tools,

compatibility

Steep learning
curve

Small
popularity,

few libraries

Commercial, not
appropriate for

big projects,
performance

not appropriate
for complex

projects

Existing Languages

6

Existing Languages
Python Java/Scala/Kotlin Julia Matlab R

Type Dyn Typed Static Typed Dyn Typed Dyn Typed Dyn Typed

Paradigm OO / Proc OO / Func Proc, loosely
OO/Func

Proc - Loosely
OO

Proc - Loosely
OO

Compiled? Interpreted +
compiled

Compiled+JIT compiled+JIT Interpreted +
compiled

Interpreted

Toolchain REPL,
Interpreter +

IDE

Compiler+Externa
Build Tools

Compiler Studio Studio

Dependencies
& Versioning

Strong support Strong support Weak
Support

Weak Support Weak Support

7

Existing Languages
Python Java/Scala/Kotlin Julia Matlab R

Parallel /
Concurrent /
Distributed

Supported Strongly
supported

Supported Supported Supported

support
CPU/GPU

Via Libraries JOCL, JogAmp,
and JavaCL

Via Libraries Via Libraries Via Libraries

Libraries and
Ecosystem

Large
community

Extremely Large
community

Small
community

Large
community

Large
community

Tools support Good support
by Commercial

IDE

Best IDEs Little support Product Studio Product Studio

Performance Bad
performance

Good
Performance

Better
performance

Bad
performance

Bad
performance

8

Existing Languages
Python Java/Scala/Kotlin Julia Matlab R

Portability Bad Portability Better Portability Supported
Win/Linux

Supported
Win/Linux

Supported
Win/Linux

Numeric
Scientific
Calculation

Libraries, bad
integration

Libraries, bad
integration

Complex /
Matrices

Complex /
Matrices

Complex /
Matrices

Symbolic
Scientific
Calculation

Libraries, bad
integration

Libraries, bad
integration

Supported Supported Supported

Scientific
Readability

bad worst good good average

Native
Integration

average average good average minimal
9

Journey to a new Programming Language
● Moved to Scala

○ Refactored the code into

■ Hadruplots

■ Hadrumaths

■ Hadruwaves

○ Written ports to the libraries in Scala

○ Much better readability

○ Still

■ quite difficult to start a new “code” from scratch

■ Scala is difficult for non initiated to programming

researchers

■ Compiling errors difficult to “understand”

■ Limitations inherited from the Java Language

■ Inconsistencies between Scala Collections & Java

Collections

● Used Matlab/Scilab/Octave in

simulations

○ As soon as the number of files

becomes important (100) this is

no more manageable

○ Serious performance isssues

● Moved to C/C++ (blas, …)

○ Very hard to maintain too

● Moved to Java

○ Rewritten all of the code in Java

○ Written microwaves library

○ Good performance

○ Not accepted complexity by other

research colleagues

10

Hadra Language
● Concise

● Readable

● Single file project

● Modular & Extensible

● Functional and OO

○ All constructs are

functions (for,

while, switch…)

○ All functions are

Objects

● Introduces

Elastic

Calculation

Concept :

Numeric and

Symbolic at the

same time

● GPL as DSL

● New programming Language

that obviously learns from

predecessors

● Focuses on Complex

numbers, Vectors, and

Matrices

● Base on the Java VM

(compiles to Java Byte Code)

● Statically Typed

● Makes advantage of Unicode

support

11

Hadra : Hello World
file: hello.hl
println(matrix(3,(i,j)->i+j));

shell:
> hl hello.hl

result:
[

 0 1 2

 1 2 3

 3 4 5

]

file: plot.hl
import net.thevpc.scholar:hadrumaths;

Plot.title(“sinus function”).asCurve

 .plot(sin(X)*II(0..2π));

shell:
> hl plot.hl

12

Hadra : Literals Arrays
int[5] tab (i −> 2*i) ; // [0, 2, 4, 6, 8]

tab[0..2] = [15, 20, 30]; // [15, 20, 30, 6, 8]

tab[2..4] = tab[4..2]; // [15, 20, 8, 6 30]

int[5] tab2(1) ; // [1, 1, 1, 1, 1]

int[5] tab3(Math::random) ; // [0.1, 0.5, 0.2, 0.7,

0.1]

int[5] tab4=[1, 2, 3] ; // [1, 2, 3]

int[] tab5 = tab1 :+ tab2 :+ tab3; // concat

int twelveDecimal = 12 ;

short sixteenBinary = 0b10000s;

bigint twelveHexBigInt = 0xCI ;

bigdecimal tens = 10.2E23D;

long C = 300_000_000 GHz;

var μ₀ =4π*10⁻⁷ H/m;

localdate d= t"2020 −02 −01";

Complex c= î+1;

var c2= î+1;

var msg=$”the day is $d”;

var json={a:1, b:’two’};

13

Hadra : Functions & Classes
fun int sqsum(int ...a) { // sqsum(1,2)=5

 switch(a.length)

 case 0: 0; case 1: a[0];

 default : a[0]²+sqsum(a[1..]);}

fun boolean palindrome(int[] a) {

 a[..$/2]==a[$..$/2];}

Extension function
fun double Complex::norm(this a) {a.abs();}

var c= î+1;

var v1=norm(c); var v2=c.norm();

class Complex(double r, double i){

 fun double abs(){sqrt(r²+i²);}

 fun Complex +(Complex o) {

 Complex(r+o.r,i+o.i); }

 fun Complex +(double o)

 {Complex(r+o,i);}

 fun Complex (double o)+

 {Complex(r+o,i);}

}

14

Hadra : Matrices
Sums

double v=sum(1..1000, x −> sin(x²)) ;

Scalar Products
int[] tab1 = [a, b, c];

int[] tab2 = [A, B, C];

int v = tab1 ** tab2 ; // = aA+bB+cC

int[][] v2 = tab1 :** tab2 ; // = [a**A , a**B , a**C

 b**A , b**B , b**C

 c**A , c**B , c**C

]

Matrix<int> m1 =

 [0 , 0 , 0 ; 0, 1, 2 ; 0, 2, 4];

Matrix<int> m2 = [1 , 2 , 3 ;

 3 , 2 , 1];

var m3 =matrix(3,(i,j)->i*j); // = m1

var m3 =matrix(3,(i,j)->i*î+j); // complex

matrix

var m3 =symMatrix(3,(i,j)->i*î+j);

var v1 =vector(3,(i)->i*î); // vector of

complexes

15

Hadra : Symbolic Programming
Param m();

Param n();

var fₙₙ = sin(m*X) * cos(n*Y) * II(0..π)

;

var f₀₁=fₙₙ(n->0, m->1)

var all_f=seq(fₙₙ , n->0..3, m->0..3)

// function declared on [0..π], zero

elsewhere

var f = sin(X) * cos(Y) * II(0..π) ;

// symbolic derive

var g = derive(f , X) ;

// symbolic integration

var g = integrate(f , X, 0..π/2) ;

// ## This is a markdown comment Title

// Here is an example of using latex expressions

var θ=X;

var f₁=```latex \cos^2 \theta - \sin^2 \theta```;

var f₂=cos(θ)²sin(θ)²;
Plot.plot(f₁,f₂);

Using Latex

16

● The runtime is responsible of switching from Symbolic to Numeric (and vice

versa)

● No need to explicitly sym/dblquad (as in matlab)

● Rule Based decisions

● Includes simplications/transformations to detect usual expressions

● Numeric calculation is done only when needed

Hadra : Elastic Calculation

 var formal_scalar_product = sin(m*X) ** cos(n*Y) * II(0..π);

 var formal_scalar_product = sin(X) ** cos(Y) * II(0..π);

 var numeric_scalar_product = sin((1+X)/cos(Y)) ** cos(Y) * II(0..π);

 var formal_simplifiable = sin(X)² + cos(X)²;

17

Hadra Integration : Native Code (C/C++), Java / Scala

@native("c")

class StandardAccess {

 void printf(string format, object ... args);

 int scanf(string format, object ... args);

}

byte[32] bytes;

StandardAccess.scanf("%s", bytes);

StandardAccess.printf("%s [%s] %s %s!\n", "Your message", Native.toString(bytes), "is

printed in C", "5.5.0");

● Seamless integration with C/C++

● Uses JNA/JNA under the hoods

● Uses a specific annotation @native

● Seamless integration with Java/Scala

JFrame f(“java frame”)

 .{visible=true; title=”example”;};

f+Button(“click me”);

18

Hadra vs the world
Hadra Java Julia C/C++ Python Matlab

Operator overloading yes** no yes yes yes no

Superscript/Subscript yes no no no no no

Matrices / Complex hadrumaths library yes library library yes

Control structures overloading (redefine for/while) yes no no no no no

Single file project (with dependencies) yes no Comp. opt. Comp. Opt. yes Mex or javaaddpath

Paradigm func/OO OO Proc OO/Proc OO Proc, supports OO

BLAS and LAPACK hadrumaths JBLAS
library

Seamless
integration

Library
integration

Library
integration

MEX file + Library

Elastic Numeric Calculation yes no no no no no
19

Performance
● Current version of Hadra generates

Java sources then compiles to

ByteCode (for validation purposes)

● Small Performance enhancements

due to literal optimizations

○ Regexp

○ Dates

○ Primitive types

● Performance tested against

○ https://benchmarksgame-team.p

ages.debian.net/benchmarksgam

e/index.html

○ Considered: the best results

Hadra

108%

Java

115%

Julia

100%

C

65%

Python

3984%

20

Conciseness
● Comparing Hadra source length to

Java equivalent code

● Using sample code

○ #1: Sci code: using operator

overloading in hadrumaths

○ #2: Java purely procedural

○ #3 Data classes,Typical Java code

○ #4 average of all the above

Sci

Code

32%

Proce

dural

88%

POO Any

62%

67%

21

Why Hadra
1

● First OO

Programming

Language is “Small

Talk”

● Hadra means “Lots

of talk” in Tunisian

● It means also

“Interesting Thing”

2

● Hadra builds upon

existing work and

libraries in the

Laboratory:

○ Hadrumaths

○ Hadruwaves

○ Hadruplots

3

● The prefix hadru and

the name hadra come

from “Hadrumet”,

the Phoenician name

of Sousse, the city

where the authors

are from

22

Conclusion

Existing Sci Languages

● DSL / GPL Blurry boundaries

● No clear winner

Proposed a new

Language

● Readable, Concise, Simple

● Based on JVM: portable

TODO: Tooling

● Under construction, Netbeans/Intellij Integ.

● Syntax Highlighting in Kate/Sublime etc.

TODO: Sources & Perf

● To be published shortly under OSS License

● (now as private GITHUB repository)

G
R

A
A

L
V

M

23

Thank you
taha.bensalah@gmail.com
taha.bensalah@eniso.u-sousse.tn
http://github.com/thevpc

24

